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Abstract It is shown that when a hydrogen-like atom is treated as a twodimensional system 
whose configuration space is multiply connected, then, in order lo obtain the same energy 
specmm as in the Bohr model, the angular momentum must be half-integral. 

In quantum mechanics, there are two alternative methods for quantization of a physical 
system: the canonical quantization and the Feynman path-integral formulation. While 
the more familiar canonical quantization replaces classical observables by operators which 
obey Heisenberg commutation relations and, hence, the mathematics one invokes is that 
of operators in Hilbert space, the path-integral formulation of quantum mechanics is based 
on the concept of the transition amplitude to which all possible paths contribute [ I 4  
However, although the Feynman formulation is closely related to the canonical equations 
of quantum mechanics, there remain some profound differences between the two methods 
concerning the nature of physical observables. With the method of canonical quantization, 
due to the Heisenberg uncertainty relation, it is not possible to define a path in the classical 
sense for a particle to move from one place to another in space. On the other hand, when the 
Feynman path-integral method of quantization is employed, then, since this method does not 
exclude the notion of classical paths of a particle, it is allowable to discuss the dynamics of 
the particle in a classical sense, until the complex-valued transition amplitude is introduced 
to describe the quantum dynamics of the particle. In particular, we are allowed to consider 
all possible paths in different frames of reference in different configuration spaces. In this 
paper, we will discuss this possibility and show that the topology of a configuration space 
can determine the quantization of the angular momentum. 

The problem we will consider is that of coordinate transformations in quantum 
mechanics and the quantization of angular momentum in multiply-connected spaces. In 
quantum mechanics, the problem of multivalued angular-momentum eigenfunctions may be 
argued to appear only because one changes from Cartesian coordinates to polar coordinates 
which are singular at the coordinate origin [5].  On the other hand, recent developments 
in quantum mechanics in multiply-connected spaces have shown that, within the present 
physical interpretation of quantum mechanics, the use of multivalued wavefunctions is 
allowable provided the configuration space is non-simply connected [6,7]. In the following, 
we will discuss the particular case of a hydrogen-like atom from the point of view of an 
observer who is in a coordinate system that describes the atom as a planar physical system. 
In this case, if we assume that the electron can never be able to penetrate the nucleus, then 
the configuration space can be considered as multiply connected and the use of multivalued 
wavefunctions is allowed. In such a situation, the single-valuedness condition is no longer 
obviously a good requirement for the angular momentum to be integral. However, we will 
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show that with this observer, the eigenvalues of angular momentum must be half-integral if 
the observer obtains the same spectrum of energy as that of an observer who observes the 
atom in three-dimensional space. 

The hydrogen-like atom consisting of a single electron of charge -e and a nucleus of 
charge Z e  is described by the eigenvalue equation 

where f i  is the reduced mass. We will consider the case of bound states with E < 0. In 
three-dimensional space, when the wavefunction is written in the form 

$(r) = R(r)K,d& @) (2) 

we get the radial equation for the function R ( r )  [8,9] 

d2R 2dR I(1+  1) b 1 -+---- R +  -R - -R = 0 
do2 ~ d p  p2 P 4  

where p and i are defined below 

(3) 

@) are the familiar spherical harmonics which are simultaneous eigenfunctions of 
L2 and L,. By the single-valuedness requirement, the quantum number m must be integral. 
Furthermore, the integral valuedness of the quantum number I is required for the consistency 
of group representation [5].  In fact, in the case of hydrogen-like atoms, the quantum number 
1 must be integral if we want to obtain the same energy spectrum as the Bohr model. When 
we seek solutions for R(r) in the form 

R(r) = exp(-p/2)p'S(p) (5 )  

then, by substitution into equation (3), we obtain the following differential equation for the 
function S(p): 

dS i - I - 1  s = 0. 
P 

This equation can be solved by a series expansion of S ( p )  

with the coefficients a. satisfying the recursion relation 

f l + l + l - A  
(fl + l)(n +21 +qUn. a,+l= 

This result and relation (4) show that the quantum number 1 must be integral for the energy 
E to have the same form as that of the Bohr model. 
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Now let us examine the hydrogen-like atom with the viewpoint of an observer who sees 
it as a planar system. Since the Schradinger equation of form (1) is invariant under rotations, 
this observer can still invoke the Schrijdinger equation for an analysis of the dynamics of 
the atomic system. However, in this case there are two important aspects which relate 
to the topology of the system which we must emphasize and exploit in our discussion. 
First, the configuration space of the atom is now multiply connected and, as mentioned 
above, multivalued wavefunctions can be used Second, in two-dimensional space, the 
more suitable coordinate system is the planar polar coordinates and so the Schrfidinger 
equation now takes the form 

Here we have assumed that the Coulomb potential retains its form. Solutions of the form 
@(r, 4) = R(r)Q@) then reduce the above equation to two separate equations for the 
functions rP and R 

d2Q -+m2@=o 
d4* 

d2R 1dR m2 2p Ze2 
dr2 r dr r2 h2 ( r ) -+ R + -  - - E  R = O  

where m is identified as the angular momentum of the system. From equation (IO), we 
obtain a solution for the function Q in the form 

Q(4) = exp(im4). (12) 

With this form of solutions, we normally require the angular momentum m to take integral 
values so that the single-valuedness condition is satisfied. However, we will show that the 
integral-valuedness requirement for the quantity m in this case is not compatible with the 
assumption that an observer in two-dimensional space should also obtain a spectrum of 
energy like that of the Bohr model. It should be emphasized here that the Bohr model is 
also a planar system. 

From equation (1 I), if we define p and A as in (4) then we can Write this equation in a 
simpler form 

d2R I d R  m2 h 1 -+- - - - -R+-R--R=O.  
dp2 P O  p2 P 4 

We notice that the crucial difference between the equation for R, in this case, and 
equation (3) is the factor 2 before dR/dr. This equation can also be solved by writing 
R in the form (5) as before. The equation for the function S@) now differs slightly from 
equation (6) by the coefficient before S: 

A power-series solution (7) for the function S will result in the following recursion relation: 
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With this result and by relation (4), the energy spectrum in this case can be written explicitly 
in the form 

Hence, if the hydrogen-like atom is viewed as a two-dimensional physical system and if the 
energy is observed to have the same spectrum as that of the Bohr model, then the angular 
momentum m must take half-integral values. However, it can be verified that integral 
values for the angular momentum m can be retained if we add to the Coulomb potential 
a quantity - ( h m ) / r  when the hydrogen-like atom is viewed as a two-dimensional 
physical system. 

We have shown in a simple but explicit way that the topological structure of a 
configuration space of a physical system can determine the quantum nature of an observable 
of the system, This result should be expected in quantum mechanics since we know that 
the quantum behaviour of a particle depends almost entirely on the configuration of an 
experiment. If, in a particular experiment, the electron of a hydrogen-like atom is constrained 
to move in a plane, then the orbital angular momentum of the electron must take half-integral 
values if we use the Schrodinger equation to study the dynamics of the electron and want 
to retain the same energy spectrum as the Bohr model. As a consequence, it might seem 
possible to invoke the result to explain the Stern-Gerlach experiment without the necessity 
of introduction of spin into the quantum theory. In this case, there emerges a problem that, 
in order to incorporate the situation into the dynamics of the electron in threedimensional 
space, we would have to describe the physical system of the hydrogen-like atom in terms 
of the mathematics of its possible topological structures. 

Let us speculate on another possible related problem that arises from the multiply 
connectedness of a configuration space of a physical system and the multivaluedness of 
wavefunctions in this space. In physics, singular behaviours of a physical quantity are 
sometimes due to a breakdown of the coordinates used for its description, and, in such cases, 
singularities can be removed by suitable coordinate transformations. Such a singularity is 
the well known Schwarzschild singularity at r = 2m in general relativity. In Einstein's 
theory of general relativity, the Schwarzschild metric takes the following form [lo]: 

&z = - (1 - ?) dt2 + (1 - ?)-I dr2 + r2(dOZ + sin20d&). (17) 

With a solution in this form, the mebic components become singular at both r = 2m and 
r = 0. However, it has been shown that, while the singularity at r = 0 is a true physical 
singularity, the singularity at r = 2m is only a coordinate breakdown [ l l ,  121. However, we 
can ask the interesting question as to whether the Schwarzschild singularity at r = 2m is real 
and detectable with respect to an observer who uses the Schwarzschild coordinates. This 
problem may be seen as an analogue to the problem discussed in this paper in the sense that 
if we consider the planar configuration of the hydrogen-like atom simply connected, then the 
wavefunctions must be non-singular and the angular momentum must take integral values. 
However, when the topological structure of the physical system of the hydrogen-like atom is 
multiply connected, the wavefunctions can be multivalued, and then the angular momentum 
may take half-integral values. The singularity of the wavefunctions of the SchrOdinger wave 
equation in quantum mechanics, in this case, can, therefore, be regarded as similar to the 
Schwarzschild singularity of the Schwarzschild metric, which is a solution of the Einstein 
field equations of general relativity. 
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